

Intentional Innovation through Fail Fast Formulating

ANDREW RECKER

What is Innovative?

What products are innovative? Why? Which companies are innovative? Why?

Degree of Innovation

► Types of Innovation –

- Typically Sustaining
 - Significantly better
 - Market asking for it
- Disruptive starts out slow
 - Changes the way things are done
 - Examples;
 - Intumescent versus cementitious
 - Films versus liquid paint
 - Passivation versus barrier coat

Intentional Innovation

How do we know it's innovative? New Ideas with High Market Impact \$\$\$

Ideal - Sustainable difference, Significantly better, Easily adopted

Why do we want innovation?

- Profitability Gross profit margins are higher than that of average
- **Sustainability** Development profits that last and are protected through IP
- Market share Market revenue increases as identity develops "supplier of solutions"
- Your competition is!

Innovation by design?

- Culture of Critical Thinking and Creative Problem Solving
 - Creating a Need and Desire to solve problems and be entrepreneurs

Market Needs for Innovation

Mature Markets – Nice to Haves / Incremental Improvements

- Major problems solved
- Satisfied with current solutions
- High level of competition and cost reduction
- Ex. Bridge and Highway

Emerging Markets – Must Haves / Step Change Solutions

- Many problems with full range of difficulty
- Value add options with accelerated change
- Ex. Enhanced Oil
- Ex. Electronic Vehicle

Accidental Innovation

Microwave oven –

Vulcanized rubber -

Velcro –

Penicillin -

Viagra –

Corn flakes –

Pacemaker –

Radioactivity –

Dynamite –

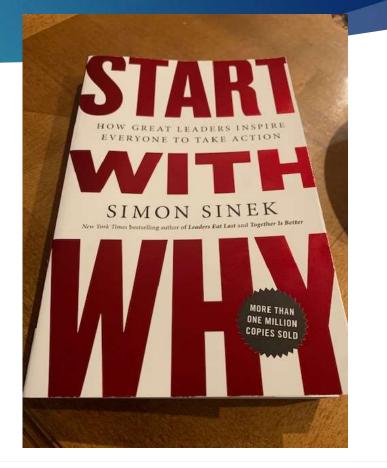
Coca-Cola -

Starts with a technology?

Starts with a molecule?

Starts with a problem?

Something else?


Purpose and Focus

"Start with WHY", Simon Sinek

Start with a **Purpose** and maintain it.

Common issues –

- Scope change / creep
- Moving key targets (CTQs)
- Broad approach, "see what happens"
- Technology focus, PUSH
- Internally created, "out of touch"
- Poor listening, interpretation

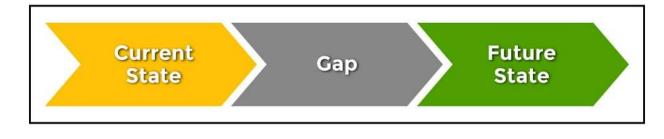
Innovation Process

Innovation Strategy

1. Start with **Real Voice of Customer** and **Problem Statements** from Sales and Marketing

2. Create a **Wealth of Technology** with **Value Propositions (solutions)** to problem statements

Stage Gate 1 - Opportunity / Financial and Conceptual Design


- Get it right in the beginning with commitment from commercial
- Quicker to market with value-add process
- Greater sales revenue generation immediately after launch

What is a Problem Statement?

- "A problem statement is usually one or two sentences to explain the problem your solution / project will address. In general, a problem statement will outline the negative points of the current situation and explain why this matters. It also serves as a great communication tool, helping to get BUYIN and SUPPORT from others."
- Apply the 5 W's Who, What, Where, When, and Why

٠

10 Confidential

Writing a Problem Statement

Review your new problem statement against the following criteria:

- It should focus on only ONE problem.
- It should be one or two sentences long.
- It should NOT suggest a solution.

We do not develop technologies!

Poor Problem Statement Approach

Misuse 1: Problem statement are used as a feature list

Misuse 2: Problem statements are driven by business goals

Top ten -	 Assign a cause Contain the solution Are based on conjecture or belief rather than fact
	4. Are too long
	5. Do not describe actual current condition or problem condition
	6. Do not describe the ideal or desired condition
	7. Are not measurable
	8. Are unclear
	9. Are not specific
	10. Refer to issues outside of the scope of the actual problem

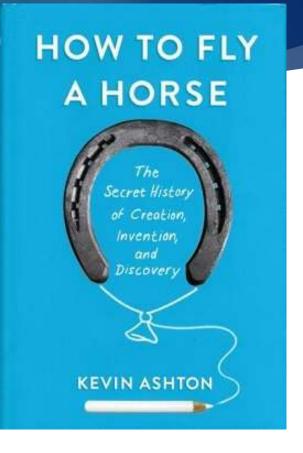
Charles Kettering of General Motors Corporation is said to have said "A problem clearly stated is a problem half solved."

> https://blog.gembaacademy.com/2007/11/08/t op_10_problems_with_problem_statements/

12 Confidential

Who is an Innovator?

"A formulator is a professional responsible for creating and developing products according to specifications and regulations. They ensure quality by conducting programs of sampling and analysis, and maintain production schedules."...INNOVATOR?

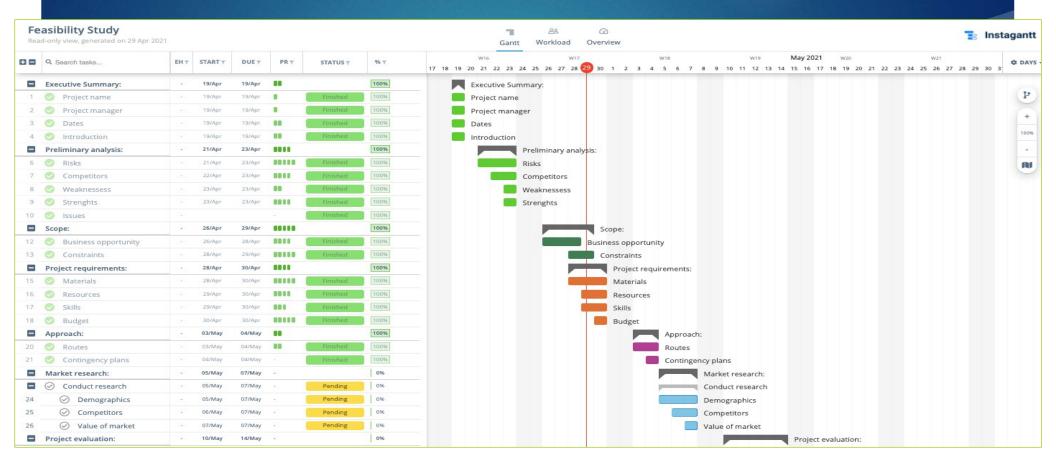

How Do We Innovate?

"How to Fly a Horse", Kevin Ashton

"Creation is not a moment of inspiration but a lifetime of endurance."

Does it take something special to be innovative?

Is everybody innovative?



Mission Statements

Drive market value solutions for high value asset protection through **superior subject matter expertise**.

- We actively pursue adding value to the business
- We are not a "service" to the business
- We are driven to learn at depth every aspect of what we do creating true expertise
- We do not wait for opportunity to come our way to provide the next challenge
- We create our path, make our way, and drive to the desired outcome

Complete Project Planning

Plan to Fail - Systematic

Fail Fast Testing –

- Purpose Downselect prototypes (possible options)
- Quick screening of all possibilities from all sources
- Focus on relative performance, not absolute
- NO PASS
- Do not assume and eliminate poor performers before screening
- ▶ The range of performance will provide the logic and direction
- How is this different from what is typical or standard practice?

Plan to Pass – Standard Practice

Problem statement – Current atmospheric coating systems don't meet life of asset expectations in an aggressive environment (Ex. offshore platform).

ALL Design Profile CTQs – Fitness for Use / Fitness for Purpose

- Atmospheric corrosion (ASTM D 5894, NaCl, NH4SO4)
 - Adhere to the standard and the expectation in the specification
- Weathering UV degradation resistance (UVA)
 - Include test fence significant location(s) exposure (Florida, Arizona)
- Application Well defined criteria related to existing products (Chemistry?)
 - ▶ Pot life, cure speed, sag resistance, film formation, viscosity, VOCs, 1K / 2K

Plan to Pass vs Plan to Fail

Standard Testing -

- 5000-10000hrs
 - 200-400days????
 - How long would it be before usable comparative test data would be produced?
- Increase the severity and accelerate the comparative testing
- Benchmarks are CRITICAL

(a) 1000 Hours

(b) 5000 Hours

(c) 10000 Hours

Plan to Fail – Agile Iterating

- Problem statement Current atmospheric coating systems don't meet life of asset expectations in an aggressive environment (Ex. offshore platform).
- Focus CTQs
 - Electrolyte corrosion (TM0174)
 - 120F, 5% NaCl immersion
 - UV degradation resistance (UVB)
 - UV-B (280 315 nm), energy at 426 380 KJ mol⁻¹
 - ▶ UV-A (315 400 nm), energy at 389 300 KJ mol⁻¹
- Standard CTQs Less important, Focus during Stage 3 development / optimization
 - ▶ VOCs, DFT, cure time, viscosity, etc.

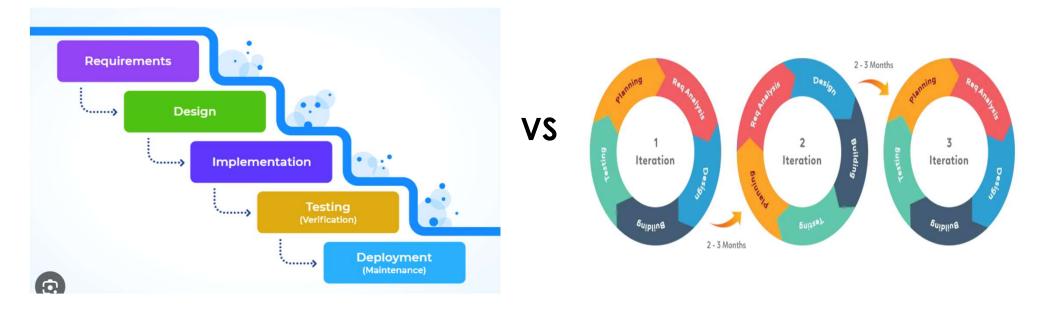
Fail Fast - Summary

Stage 2 Critical Few Failure Cycle Development

- Key MUST HAVES from voice of customer create screening cycle DOE
 - The essential "gap" in the product solutions
- Determine approaches from mind map brainstorm
 - Nodes and Participants
 - Internal / External...Suppliers / Institutions
- Construct useful DOE with proper stimulus and response
 - Target outcome FAIL LAST
- Define number of cycles upfront to narrow feasibility to select few
 - Then what? How many prototypes do we need to proceed into Stage 3 formulation development and optimization?

Finding the MVP(s)

Standard Development - Minimum Viable Product

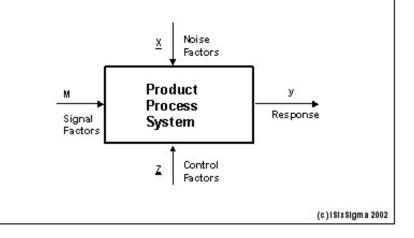

- Focus on select CTQ criteria to establish an MVP to build off
- More absolute than relative data
- Goal is to pass some minimum threshold(s)

Fail Fast, Fail Last Screening – Most Viable Prototype

- Focus on select CTQ criteria to DOWNSELECT from many options
- Completely relative, comparative data
- Known benchmarks are CRITICAL
- Negative data is just as important

Agile Project Management

Iterative fail fast cycles – Similar to Agile vs Waterfall



Robust Design

Test to Failure to Understand the Range of Performance

- What features and benefits are we pushing the limits with?
- Temperature, exposure duration, rheology
- Don't sell the extent of performance!
 - On the edge of failure...claims
- Understand full set of variables in all variations
 - Surface energy differences,
- Taguchi Methods DFSS
- Minimize the response from variation through controls
- What is "Six Sigma"?

Parameter Diagram of a Product/Process/System

Key to Innovating Success

Try something different!

- Does it need to be epoxy / polyurethane
- Using adhesion to overcome barrier shortcomings
- Crystallinity in a thermoset
- Hybrid cure mechanisms, epoxy / NCO / silanol
- Coating responds to the environment / service conditions

THANK YOU!

QUESTIONS?